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1. INTRODUCTION

The well-known Hermite-Fejer interpolation process for a functionf(x) is
given by

n

I f(x,J Iz,,(x),
kl

where

(I.I )

H~(f, X,J == 0, k =c 1,2, ... ,11. (1.2)

The fundamental functions h,lx) in (1.1) are given by

k c_= I, 2, ... , II, ( 1.3)

where

and {Xlc}~~l are the zeros of a polynomial WnCx):

(1.4)

(n = 1,2,... ). ( 1.5)

According to Fejer [1], Hn(f, x), with Wn(x) = Tn(x), the nth Tchebycheff
polynomial of the first kind, converges uniformly to f(x) E C[-1, 1]. In 1960
Tunin suggested that perhaps omission of derivatives at a "few" exceptional
points ''7v would not damage the convergence property of the resulting
modified Hermite-Fejer polynomial Hv~n)(f, x), now of a lower degree than
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HnU: x). In [6] he proved the unexpected result that the convergence of
H0nj(f, x) is not uniform in general. Uniform convergence in [-I, I] holds
iff

II xf(x)
(1 - 2)1/2 dx = °-1 X

(1.6)

when the interpolation nodes are the zeros of Tix). But lim H0nj(f, x)x~COS7T/5

does not exist for a suitable continuous function when the exceptional point
is near to cos 7T/5. For detailed study one is referred to [3, 6, 7, 8]. Now one
may ask the following question:

Is there any matrix of nodes for which the modified Hermite-Fejer inter
polation process H~n)(f, x) given by

Hv~n)(r. x)= Hn(f, x) + (x - x,J l}(x) W~2(X,J 1~/(Xl.,) ::;~~:~ , (1.7)

satisfying the properties

Hv~n)(f, x,,) = f(x,,),

Hv~~)(f, x,,) = 0,

k = 1,2,... , n,

I ~ k ~;; n, k * fJ-,

(1.8)

converges uniformly to every f(x) E C[-I, I]? We shall answer this question
in the affirmative by proving the

THEOREM. The interpolation process H0nl(f, x) constructed on the point
system

I 2k - 1
cos 2n + I I 2k In

cos 2n + I 7T ~ k~O ' I
k I Inor cos --=-1 7T
11 "~1

converges uniformly to every f(x) E C[-I, I].

To prove our theorem we shall require the following

LEMMA. For every f(x) E C[-1, 1], we have

where

f(-I)
-1-2-- (1.9)

2k - 1
x" = cos 2n + I 7T, k = 1,2,... , n;

(1.10)
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where
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and

2k
-'Ie ~,~ cos -2--'-1- 7T,n -T~

k 1,2,.,., n;

where

(1.11)

k - I
-'k = cos n=T 7T, k c~-~, I, 2"." n.

Equalities (1.9) and (LlO) have been proved by the first author [2}, while
(1.1 I) has been established by Saxena [5}.

2. PROOF OF THE THEOREM

Let

The points

2k - I
-'Ie = cos ~ 7T,

2n + 1
k = I, 2, ... , n + I. (2.1)

1 2k - I I"cos 7T
2n + I k~l

are the zeros of the Jacobi polynomial P~-1/2,1/2)(X), which is identical with
[cos(2n + 1) 812}/(cos 812), where x = cos 8, and which satisfies

+- n(n + I) p~-1/2.1i2)(X) == O.

Let Wn(x) = (IT x) p~-1/2,1/2)(X). One easily sees that

(2.2)

W~(-1) =, p~-1/2.l/2)(-1), W~(-I) = 2P~(-1/2.l/2)( -I)

(2.3)
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From (1.7), (2.2), and (2.3), we have

[
2 I !(Xk) _ 2n(n + I) /(-1)]

X (2n + I):J I,~l (I + x,J 3(2n + I) ,
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(2.4)

which, on using Theorem I of [2], yields that, uniformly, limn~n Hn(f, x) =
f(x) for f(x) E C[-I, I], and (1.9) proves our theorem for the points

\ 2k - 1 (nc-l
leas -2+ 1- 7T\ .n k~l

For the other point-systems the proof follows similarly; we omit details.

Remark. Our theorem differs from that of Tunin [6]. In our case the
convergence is uniform in the whole interval [-1, I] for every f(x) E

C[-I, I] without any necessary and sufficient condition. In another paper
we shall omit derivatives at more than one point.
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